Eugen G. Leuze Verlag KG
×
 x 

Warenkorb leer.
Warenkorb - Warenkorb leer.
Montag, 23 August 2021 15:06

Mit Nano-Materialien gegen Viren und Bakterien

von Redaktion
Geschätzte Lesezeit: 4 - 8 Minuten
Abb. 1: Wo herkömmliche Medikamente versagen: Antibiotika-resistente Bakterien. Kolorierte elektronenmikroskopische Aufnahme Abb. 1: Wo herkömmliche Medikamente versagen: Antibiotika-resistente Bakterien. Kolorierte elektronenmikroskopische Aufnahme

Nano-Partikel übernehmen auch in der Medizin immer mehr wichtige Aufgaben. So werden sie neuerdings auch anstelle von Antibiolika eingesetzt.

Filter gegen Viren [1]

Viren können sich auf unterschiedliche Arten verbreiten. Einige tun dies über Tröpfchen und Aerosole wie das neue Coronavirus, andere lassen sich im Wasser finden wie Rota- oder Enteroviren. Bisher wurden solche aquatischen Viren mittels Nanofiltration oder durch das Verfahren der Umkehrosmose aus dem Wasser entfernt, was teuer ist und die Umwelt belastet. Nanofilter etwa bestehen aus erdölbasierten Rohmaterialien, die Umkehrosmose wiederum benötigt relativ viel Energie.

Abb. 2: Tödlicher Kontakt: Forschende der Empa und der ETH haben Nanopartikel (rot) entwickelt, die resistente Bakterien (gelb) abtötenAbb. 2: Tödlicher Kontakt: Forschende der Empa und der ETH haben Nanopartikel (rot) entwickelt, die resistente Bakterien (gelb) abtötenNun hat ein internationales Team von Forschenden unter der Leitung von Raffaele Mezzenga, Professor für Lebensmittel und weiche Materialien an der ETH Zürich, eine neue Filtermembran entwickelt, welche Viren hocheffektiv aus Wasser eliminiert und umweltfreundlich ist. Für ihre Herstellung verwendeten die Forschenden natürliche Ausgangsmaterialien.

Die Filtermembran basiert auf dem demselben Prinzip, das Mezzenga und seine Mitarbeitenden entwickelt haben, um Schwer- oder Edelmetalle aus dem Wasser zu entfernen. Die Grundlage der Membran sind denaturierte Molkeproteine, die sich zu feinsten Fäserchen, sogenannten Amyloidfibrillen, zusammenlagern. Neu haben die Forschenden dieses Fibrillengerüst mit Nanopartikeln aus Eisen-Hydroxid (Fe-O-HO) kombiniert.

Die Herstellung der Membran ist relativ einfach. Um die Fibrillen zu produzieren werden aus der Milchverarbeitung stammende Molkeproteine in Säure gegeben und auf 90 °C erhitzt. Dadurch strecken sich die Proteine und lagern sich aneinander an, so dass Fäserchen entstehen. Die Nanopartikel lassen sich im selben Reaktionsgefäss wie die Fibrillen erzeugen, indem die Forschenden den pH-Wert anheben und Eisensalz beigeben. Dieses „zerfällt“ in Eisen-Hydroxid-Nanopartikel, die sich an den Amyloidfibrillen anlagern. Als Träger für die Membran verwendeten Mezzenga und seine Mitarbeitenden in diesem Fall Zellulose. Die Kombination von Amyloidfibrillen und Eisen-Hydroxid -Nanopartikeln macht die Membran zu einer hochwirksamen und effizienten Falle für verschiedene, im Wasser zirkulierende Viren. Das positiv geladene Eisenoxid zieht die negativ geladenen Viren elektrostatisch an und inaktiviert sie. Die Amyloidfibrillen alleine wären dazu nicht in der Lage, da sie wie die Virenpartikel bei neutralem pH-Wert ebenfalls negativ geladen sind. Die Fibrillen sind aber der ideale Träger für die Eisenoxid-Nanopartikel.

Die Membran eliminiert verschiedene Viren im Wasser, so auch hüllenlose Adeno-, Retro- und Enteroviren, die gefährliche Magendarm-Infektionen verursachen können. Pro Jahr sterben rund eine halbe Million Menschen – oft Kleinkinder in Entwicklungs- und Schwellenländern – an Infektionen mit Enteroviren. Diese sind äußerst zäh und säurebeständig und verbleiben sehr lange im Wasser. Die Filtermembran könnte deshalb gerade in ärmeren Ländern solche Infektionen verhindern helfen.

 Pro Jahr sterben rund eine halbe Million Menschen – oft Kleinkinder in Entwicklungs- und Schwellenländern – an Infektionen mit Enteroviren

Sehr effizient eliminiert die Membran auch Grippeviren pN1 sowie das Sars-Cov-2-Virus aus dem Wasser. In den gefilterten Proben lag die Konzentration der beiden Viren unterhalb der Nachweisgrenze, was einer fast vollständigen Eliminierung diese Krankheitserreger gleichkommt.

„Wir sind uns bewusst, dass das neue Coronavirus überwiegend über Tröpfchen und Aerosole übertragen wird. Doch selbst dabei muss es stets von Wasser umgeben sein. Dass wir es sehr effizient auch aus dem Wasser entfernen können, unterstreicht die breite Anwendbarkeit unserer Membran eindrücklich“, sagt Mezzenga.

Konzipiert ist die Membran in erster Linie für den Einsatz in Kläranlagen oder bei der Trinkwasseraufbereitung. Sie könnte jedoch auch in Luftfilteranlagen oder sogar in Masken eingesetzt werden. Sie besteht ausschließlich aus biokompatiblen Materialien, könnte also nach Gebrauch einfach kompostiert werden, und lässt sich mit minimalem Energieaufwand produzieren. Sie weist deshalb eine hervorragende Umweltbilanz auf, wie die Forschenden in ihrer Studie ebenfalls aufzeigen. Die Filtration ist passiv, kommt also ohne zusätzlichen Energieaufwand aus, was den Betrieb CO2-neutral macht und sie für verschiedene Einsatzorte prädestiniert.

An der Arbeit beteiligt waren nebst dem Labor von Raffaele Mezzenga auch Wissenschaftlerinnen und Wissenschaftler von mehreren Schweizer Universitäten, darunter Virenspezialistinnen der Universitäten Zürich, Lausanne und Genf, der EPFL, der Universität Cagliari sowie des ETH-Spin-offs BluAct. Das Unternehmen hält das Patent auf diese neue Technologie.

Mit Nanopartikeln gegen gefährliche Bakterien [3]

Abb. 3: Neutrophile verschluckt MRSAAbb. 3: Neutrophile verschluckt MRSABeim Wettrüsten „Menschheit gegen Bakterien“ haben die Bakterien momentan die Nase vorn. Unsere einstigen Wunderwaffen, die Antibiotika, versagen immer häufiger bei Keimen, die trickreiche Manöver einsetzen, um sich vor der Wirkung der Medikamente zu schützen. Einige Arten ziehen sich sogar ins Innere menschlicher Körperzellen zurück, wo sie dann vom Immunsystem unbehelligt bleiben. Zu diesen besonders gefürchteten Erregern gehören auch sogenannte multiresistente Staphylokokken (MRSA), die lebensgefährliche Krankheiten wie Blutvergiftungen oder Lungenentzündungen hervorrufen können.

Um die Keime in ihrem Versteck aufzuspüren und unschädlich zu machen, hat ein Team von Forschenden der Empa und der ETH Zürich nun Nanopartikel entwickelt, die einen völlig anderen Wirkmechanismus als herkömmliche Antibiotika nutzen: Während Antibiotika schlecht in Körperzellen eindringen können, gelingt es diesen Nanopartikeln aufgrund ihrer geringen Größe und Beschaffenheit, sich ins Innere der befallenen Zelle einschleusen zu lassen. Einmal dort angekommen, bekämpfen sie die Bakterien.

Das Team um Inge Herrmann und Tino Matter hat hierzu das Material Ceroxid eingesetzt, das in seiner Nanopartikel-Form antibakteriell und entzündungshemmend wirkt. Die Nanopartikel kombinierten die Forschenden mit einem bioaktiven Keramikwerkstoff, sogenanntem Bioglas. Interessant ist Bioglas für die Medizin, da es vielseitige regenerative Eigenschaften hat und beispielsweise für den Wiederaufbau von Knochen und Weichteilen eingesetzt wird.

Mittels Flammensynthese wurden schließlich Nanopartikel-Hybride aus Ceroxid und Bioglas hergestellt. Die Partikel konnten bereits erfolgreich als Wundkleber eingesetzt werden, wobei gleich mehrere interessante Eigen- schaften simultan genutzt werden können: Dank der Nanopartikel können Blutungen gestoppt, Entzündungen gedämpft und die Wundheilung beschleunigt werden. Zudem zeigen die neuartigen Partikel eine signifikante Wirkung gegen Bakterien, während die Behandlung für menschliche Zellen gut verträglich ist. Erst kürzlich konnte die neue Technologie erfolgreich patentiert werden. Ihre Ergebnisse publizierte das Team jetzt im Fachmagazin „Nanoscale“ in der „Emerging Investigator Collection 2021“ [4]. Tino Matter arbeitet momentan daran, die neue Technologie zur Marktreife zu bringen. Sein Start-up anavo medical konnte bereits mehrere Erfolge feiern – unter anderem war es unter den drei Finalisten des Swiss Technology Awards.

Unter den Bakterien gibt es einige besonders trickreiche Krankheitserreger, die in Körperzellen eindringen und dort für das Immunsystem unsichtbar sind. So überdauern sie Zeiten, in denen die Körperabwehr in Alarmbereitschaft ist. Auch für Staphylokokken ist dieses Phänomen bekannt. Sie können sich in Zellen der Haut, des Bindegewebes, der Knochen und des Immunsystems zurückziehen. Der Mechanismus dieser Persistenz ist noch nicht völlig geklärt.

Staphylokokken sind meist harmlose Keime, die auf der Haut und auf Schleimhäuten vorkommen können. Unter bestimmten Bedingungen aber fluten die Bakterien den Körper und lösen schwere Entzündungen aus bis hin zu einem toxischen Schock oder einer Blutvergiftung. Dadurch sind Staphylokokken die Haupttodesursache durch Infektionen mit nur einem einzigen Erregertypen.

Besonders prekär ist die zunehmende Zahl an Staphylokokken-Infektionen, die nicht mehr auf eine Behandlung mit Antibiotika ansprechen. MRSA, multiresistente Keime, sind vor allem in Spitälern gefürchtet, wo sie als nosokomiale Erreger schlecht behandelbare Wundinfektionen hervorrufen oder Katheter und Geräte besiedeln. Insgesamt kommt es in der Schweiz jedes Jahr zu rund 75 000 Spitalinfektionen, 12 000 davon verlaufen tödlich.

Die Wechselwirkungen zwischen den Hybrid-Nanopoartikeln, den Körperzellen und den Keimen konnten die Forschenden unter anderem anhand von Elektronenmikroskopie-Untersuchungen aufzeigen. Wurden infizierte Zellen mit den Nanopartikeln behandelt, begannen sich die Bakterien im Inneren der Zellen aufzulösen. Wurde die Aufnahme der Hybrid-Partikel hingegen von den Forschenden gezielt blockiert, stoppte auch der antibakterielle Effekt.

Der genaue Wirkmechanismus der Cerium-haltigen Partikel ist derzeit noch nicht vollständig geklärt. Erwiesen ist, dass auch andere Metalle antimikrobielle Effekte aufweisen. Cerium ist allerdings weniger giftig für Körperzellen als beispielsweise Silber. Die Forschenden nehmen derzeit an, dass die Nanopartikel auf die Zellmembran der Bakterien einwirken, wobei reaktive Sauerstoffverbindungen entstehen, die zur Zerstörung der Keime führen. Da die Membran von menschlichen Zellen anders aufgebaut ist, bleiben Körperzellen von diesem Vorgang verschont.

Gegen einen derartigen Mechanismus, so meinen die Forscher, würden sich vermutlich weniger Resistenzen entwickeln können. „Zudem regenerieren sich die Ceroxid-Partikel mit der Zeit wieder, so dass der oxidative Effekt der Nanopartikel auf die Bakterien erneut einsetzt“, sagt Empa-Forscher Tino Matter. So könnten die Cerium-Partikel eine nachhaltige Wirkung erzielen.

Als nächstes wollen die Forschenden die Interaktionen der Partikel im Infektionsgeschehen genauer analysieren, um die Struktur und Zusammensetzung der Nanowirkstoffe weiter zu optimieren. Das Ziel ist, ein einfaches, robustes antibakterielles Mittel, zu entwickeln, das im Inneren infizierter Zellen wirksam ist.

Literatur

[1] Quelle: ETH News Peter Rück
[2] Palika, A.; Armanious, A.; Rahimi, A. et al.: An anti-viral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles, Nature Nanotechnology, 2021, Online publiziert 3. Juni, doi: 10.1038/s41565-021-00920-5
[3] Quelle: EMPA News Andrea Six
[4] Matter, M.T.; Doppegieter, M.; Gogos, A.; Ren, Q.; Keevend, K.; Herrmann, I.K.: Inorganic nanohybrids combat antibiotic- resistant bacteria hiding within human macrophages, Nanoscale (2021), https://doi.org/10.1039/D0NR08285

Weitere Informationen

  • Ausgabe: 7
  • Jahr: 2021
  • Autoren: Redaktion

Onlineartikel Suche

Volltext

Autoren

Ausgabe

Jahr

Kategorie

Newsletter

Auf dem Laufenden bleiben? Jetzt unsere Newsletter auswählen und alle 14 Tage die neuesten Nachrichten in Ihrem E-Mail Postfach erhalten:

Der Leuze Verlag ist die Quelle für fundierte Fachinformationen.
Geschrieben von Fachleuten für Fachleute. Fachzeitschriften und Fachbücher
rund um Galvano- und Oberflächentechnik sowie Aufbau- und Verbindungstechnik in der Elektronik –
seit 120 Jahren professionelle Informationen und Fachwissen aus erster Hand.

UNTERNEHMEN

ZAHLARTEN

Paypal Alternative2Invoice
MaestroMastercard Alternate
American ExpressVisa

Zahlarten z.T. in Vorbereitung.

KONTAKT

Eugen G. Leuze Verlag
GmbH & Co. KG
Karlstraße 4
88348 Bad Saulgau

Tel.: 07581 4801-0
Fax: 07581 4801-10

E-Mail: [email protected] oder
E-Mail: [email protected]