Eugen G. Leuze Verlag KG
×
 x 

Warenkorb leer.
Warenkorb - Warenkorb leer.
Mittwoch, 16 März 2022 10:59

Mikrofluidik – Labor im Miniaturmaßstab

von
Geschätzte Lesezeit: 4 - 7 Minuten
Diagnostiksystem zum Nachweis multiresistenter Keime. Das kompakte Gerät zum Nachweis multiresistenter Keime führt alle Reaktionsschritte automatisiert aus und liefert ein Ergebnis innerhalb einer Stunde. Schon ein einziges DNA-Molekül reicht für den Nachweis (Foto: Fraunhofer IPM) Diagnostiksystem zum Nachweis multiresistenter Keime. Das kompakte Gerät zum Nachweis multiresistenter Keime führt alle Reaktionsschritte automatisiert aus und liefert ein Ergebnis innerhalb einer Stunde. Schon ein einziges DNA-Molekül reicht für den Nachweis (Foto: Fraunhofer IPM)

Die Mikrofluidik bietet die Möglichkeit, komplexe Reaktionen auf wenigen Quadratzentimetern ablaufen zu lassen. Im Folgenden sind Beispiele aktueller Forschung zusammengefasst.

Medizinische Universität Wien: Methode zur Sequenzierung von Millionen Einzelzellen [1]

Die RNA-Sequenzierung ist eine wichtige Technologie zur Erforschung von Zellen und von Krankheiten. Insbesondere die Einzelzell-Sequenzierung ermöglicht es, die Heterogenität und Vielfalt unseres Körpers aufzudecken. Sie ist die zentrale Technologie des „Human Cell Atlas“ bei der Kartierung aller Zellen des Menschen. Allerdings stößt die Methode bei sehr großen Projekten an ihre Grenzen, da sie zeitaufwändig und sehr teuer ist. WissenschafterInnen aus der Forschungsgruppe von Christoph Bock, am CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften sowie Professor an der Medizinischen Universität Wien, haben eine neue Methode entwickelt, um sehr viele Einzelzellen einfacher und kostengünstiger zu sequenzieren [2].

Die Erforschung von Zellen ist eine wichtige Grundlage für die Entwicklung einer personalisierten Medizin. Vor fünf Jahren starteten WissenschafterInnen weltweit das Projekt „Human Cell Atlas“ mit dem Ziel, sämtliche Zellen im menschlichen Körper zu katalogisieren. Diese Daten haben zum Beispiel geholfen, sehr schnell diejenigen Zelltypen zu identifizieren, die das Coronavirus besonders gut infizieren kann.

Emulsionströpfchen von einem scifi-RNA-seq Experiment, die mit einem Vielfachen an Zellen beladen wurden (Foto: Paul Datlinger, CeMM)Emulsionströpfchen von einem scifi-RNA-seq Experiment, die mit einem Vielfachen an Zellen beladen wurden (Foto: Paul Datlinger, CeMM)Um die Erstellung solcher Zell-Kataloge zu beschleunigen und zu verbessern, entwickelten Paul Datlinger und André F. Rendeiro aus der Forschungsgruppe von Christoph Bock am CeMM eine Methode, um die die Aktivität der Gene in sehr vielen Einzelzellen gleichzeitig auslesen zu können. Diese „scifi-RNA-seq“ (für: „single-cell combinatorial fluidic indexing“) genannte Methode markiert die RNA vieler Zellen vorab mit Barcodes, bevor die Zellen in einem Mikrofluidik-Chip aufgelöst und ihre RNA zur Einzelzell-Sequenzierung vorbereitet wird. Durch diese Barcodes wird ein wesentliches Problem bestehender Methoden zur Einzelzell-Sequenzierung überwunden.

Das bisher genutzten Verfahren steht vor der Herausforderung, dass Einzelzellsuspension nur in einer sehr niedrigen Konzentration in den Mikrofluidik-Chip geladen werden können, um zu vermeiden, dass zwei Zellen im selben Emulsionströpfchen landen, wodurch ein verfälschtes Zellprofil entstehen würde. Der Großteil der Emulsionströpfchen musste daher leer bleiben, um Abstand zu den geladenen Tröpfen zu schaffen. Die Reagenzien wurden also nur sehr ineffizient genutzt.

Durch die vorgeschaltete Markierung der Zellen mit diversen zusätzlichen Barcodes können die Emulsionstropfen bei scifi-RNA-seq mit vielen Zellen gleichzeitig beladen und trotzdem Einzelzellen analysiert werden. Dies spart Zeit und Kosten. Auf dem populären 10x-Genomics- System werden mit der neuen Methode 15-fach mehr Einzelzellen gemessen. Die zusätzlichen Barcodes erlauben es außerdem, tausende Proben zu markieren und in einer einzigen Mikrofluidik-Analyse zu prozessieren. So konnte im Rahmen der Studie ein CRISPR-Screen mit Einzelzell-Sequenzierung in menschlichen T-Zellen durchgeführt werden. In Zukunft soll die Methode unter anderem dabei helfen, Immuntherapien für die Behandlung von Krebs zu verbessern.

Von der neuen Methode profitieren besonders jene Projekte, die sehr vielen Zellen oder sehr viele Proben mit Einzelzell-Sequenzierung analysieren wollen. Scifi-RNA-seq ermöglicht eine effiziente RNA-Sequenzierung von Millionen Einzelzellen und vereinfacht damit die Charakterisierung komplexer Gewebe, Organe und ganzer Organismen. Auch im biomedizinischen Bereich ist es oft wichtig, sehr viele Einzelzellen gleichzeitig zu analysieren, zum Beispiel zur Entdeckung seltener Stammzellpopulationen in Tumoren oder Krebszellen im Blut. Außerdem kann scifi-RNA-seq dazu beitragen, dass Wirkstoff-Screens und CRISPR-Screens zunehmend mit hochauflösender Einzelzell-Sequenzierung kombiniert werden.

Fraunhofer IPM: Neue Methode für den Nachweis einzelner Moleküle [3]

Resistenzen gegen Antibiotika nehmen weltweit ständig zu. Forschende am Fraunhofer-Institut für Physikalische Messtechnik IPM haben gemeinsam mit der LMU München ein Verfahren entwickelt, um multiresistente Keime sehr schnell zu erkennen. Die Besonderheit: Bereits ein einzelnes DNA-Molekül genügt für den Erregernachweis. Die Plattform soll künftig in der Point-of-Care-Diagnostik auf Krankenstationen oder in Arztpraxen eingesetzt werden – alternativ zur etablierten PCR-Analyse oder in Kombination mit anderen diagnostischen Methoden.

Bei der Behandlung von bakteriellen Infektionen entscheidet das richtige Antibiotikum über den Erfolg der Therapie. Besonders schwierig ist die Auswahl des geeigneten Medikaments, wenn die Erkrankung durch multiresistente Erreger ausgelöst wird, die unempfindlich gegenüber vielen Antibiotika sind. Die Suche nach dem wirksamsten Antibiotikum erfordert oftmals Informationen über das Genom des Bakteriums. Diese sind in der Arztpraxis jedoch meist nicht sofort verfügbar, sondern erst nach einer Labordiagnose. Um den Vorgang zu beschleunigen und zu vereinfachen, entwickelt das Fraunhofer IPM gemeinsam mit der LMU München im Projekt (SiBoF), kurz für Signal-Booster für Fluoreszenz-Assays in der Molekularen Diagnostik, eine neuartige Plattform für den Erregernachweis anhand von einzelnen Molekülen auf einem mikrofluidischen Chip. Der Fokus liegt auf einer einfach zu bedienenden Point-of-Care-Erkennung (POC). Das Vorhaben wird vom Bundesministerium für Bildung und Forschung BMBF gefördert.

Die portable, kompakte Test-Plattform verfügt über ein automatisiertes Fluidiksystem. Alle notwendigen Reagenzien werden in dem System vorgelagert. Der spritzgegossene Mikrofluidik-Chip wird in einer Schublade in das Testsystem eingebracht, wo es durch die Fluidik mit den Reagenzien versorgt wird, bevor die optische Auswertung stattfindet. Bei dem neuen Verfahren wird ein Teil des DNA-Strangs des Erregers nachgewiesen. Hierfür genügt bereits ein einzelnes DNA-Molekül, das an einer bestimmten Stelle am Mikrofluidik-Chip anbindet. Auf dem Chip befinden sich Fluidikkanäle, deren Oberflächen mit Bindungsstellen für spezifische Erreger präpariert wurden.

Typischerweise werden Ziel-DNA-Moleküle in-vitro mit Hilfe spezifischer Fluoreszenzmarker nachgewiesen. Die Besonderheit der neuen Methode des Fraunhofer IPM und der LMU München: Die Forscherinnen und Forscher setzen Antennen mit nanometergroßen Kügelchen ein, die die optischen Signale dieser Marker verstärken. Dadurch wird eine chemische Verstärkung über die Polymerase- Kettenreaktion (PCR) überflüssig. Die optischen Antennen bestehen aus nanometergroßen Metallpartikeln, die Licht in einem winzigen Bereich bündeln und dabei helfen, Licht auszusenden – ähnlich wie makroskopische Antennen mit Radiowellen. Diese Metallpartikel sind an der Oberfläche des Chips chemisch angebunden.

Eine von der LMU München speziell konstruierte Struktur aus DNA-Molekülen, ein sogenanntes DNA-Origami, hält die beiden Gold-Nanopartikel an Ort und Stelle. Zwischen diesen Nanopartikeln bietet die Struktur eine Bindungsstelle für das jeweilige Zielmolekül und einen Fluoreszenzmarker. Dieses patentierte Design bildet die Grundlage für die neuartige Assay-Technologie. Die jeweils 100 Nanometer großen Partikel dienen als Antenne. In dem Hot Spot zwischen den beiden Goldpartikeln findet durch plasmonische Effekte eine Feldverstärkung statt. Platziert man dort einen Fluoreszenzfarbstoff, wird die detektierbare längerwellige Fluoreszenzstrahlung um ein Vielfaches verstärkt. Auf diese Weise kann mit einer kleinen, kompakten optischen Vorrichtung ein einzelnes Molekül erkannt werden. Geringe Konzentrationen von Krankheitserregern lassen sich nachweisen. Das Ergebnis liegt schon nach einer Stunde vor und wird am Monitor angezeigt. Dies gilt nicht nur für multiresistente Keime, sondern für jede Art von DNA-Molekülen. Grundsätzlich lässt sich der Einzelmolekül-Assay auch auf Moleküle jenseits der DNA, wie RNA, Antikörper/Antigene oder Enzyme, anwenden. Die Funktionsweise des Verfahrens wurde durch zahlreiche Tests erfolgreich bestätigt.

Das Herzstück des POC-Geräts ist ein vom Fraunhofer IPM entwickeltes miniaturisiertes hochauflösendes Fluoreszenzmikroskop. Eine spezielle Bildanalysesoftware identifiziert die Einzelmoleküle und ermöglicht so die Zählung der eingefangenen Zielmoleküle für ein quantitatives Ergebnis. Angeregt wird die Fluoreszenz durch LED, die unterhalb der Kartusche mit den Fluidikkanälen angebracht sind. Das patentierte System liegt als Demonstrator vor. Derzeit fehlt noch ein Modul zur Probenaufbereitung. Das POC-System für den spezifischen Nachweis von Erregern wurde auf der MEDICA 2021 in Düsseldorf in vorgestellt.

Literatur

[1] Medizinische Universiität Wien

[2] Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing, Paul Datlinger, André F. Rendeiro, Thorina Boenke, Martin Senekowitsch, Thomas Krausgruber, Daniele Barreca, Christoph Bock; erschienen am 31. Mai 2021 in Nature Methods, DOI: 10.1038/s41592-021-01153-z

[3] Fraunhofer IPM

Weitere Informationen

  • Ausgabe: 2
  • Jahr: 2022
  • Autoren: Dr. Stephan Reuter

Onlineartikel Suche

Volltext

Autoren

Ausgabe

Jahr

Kategorie

Newsletter

Auf dem Laufenden bleiben? Jetzt unsere Newsletter auswählen und alle 14 Tage die neuesten Nachrichten in Ihrem E-Mail Postfach erhalten:

Der Leuze Verlag ist die Quelle für fundierte Fachinformationen.
Geschrieben von Fachleuten für Fachleute. Fachzeitschriften und Fachbücher
rund um Galvano- und Oberflächentechnik sowie Aufbau- und Verbindungstechnik in der Elektronik –
seit 120 Jahren professionelle Informationen und Fachwissen aus erster Hand.

UNTERNEHMEN

ZAHLARTEN

Paypal Alternative2Invoice
MaestroMastercard Alternate
American ExpressVisa

Zahlarten z.T. in Vorbereitung.

KONTAKT

Eugen G. Leuze Verlag
GmbH & Co. KG
Karlstraße 4
88348 Bad Saulgau

Tel.: 07581 4801-0
Fax: 07581 4801-10

E-Mail: [email protected] oder
E-Mail: [email protected]