Diese Seite drucken
Freitag, 26 August 2022 12:00

Klebstofffreie Faser-zu-Chip-Anbindung für integrierte Photonik

von Olga Putsykina
Geschätzte Lesezeit: 3 - 5 Minuten
Für das Laserschweißen von optischen Glasfasern auf PICs gibt es bereits ein industriell nutzbares Verfahren Für das Laserschweißen von optischen Glasfasern auf PICs gibt es bereits ein industriell nutzbares Verfahren

Aufbau- und Verbindungsstrategien von optischen Glasfasern mit photonischen integrierten Schaltkreisen (PICs) werden üblicherweise mit Klebstoffen realisiert. Doch das kann langfristig zu optischer Degradation und dadurch zu hohen optischen Übertragungsverlusten führen. Für kritische Anwendungen, etwa in der Medizintechnik und Life Science, wäre das fatal. Zusammen mit Industriepartnern entwickelten Forschende am Fraunhofer IZM im Rahmen des Eurostars-Projekts ‚PICWeld' ein klebstofffreies, platzsparendes und robustes Laserschweißverfahren zur Fixierung von Glasfasern an PICs.

Dr. Alethea Vanessa Zamora GómezDr. Alethea Vanessa Zamora GómezDesign and interconnection strategies of optical fibers on photonic integrated circuits (PICs) are usually realized with adhesives. But this can lead to optical degradation and thus to high optical transmission losses. For critical applications, such as in medical technology and life science, this would be fatal. Teaming up with industry partners, researchers at Fraunhofer IZM developed an adhesive-free, space-saving and robust laser welding process for fixing optical fibers to PICs as part of the Eurostars project 'PICWeld’.

Im Rahmen von ‚PICWeld' entwickelten die Forschenden des Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM) zusammen mit den Partnern LioniX International BV, Phix Photonics Assembly und ficonTEC Service GmbH das klebstofffreie und robuste Laserschweißverfahren. Durch die Integration des Verfahrens in eine automatisierte Justage-Anlage wurde außerdem auch die industrielle Reife des Systems gezeigt. „Das macht die Glas-Glas-Verbindungstechnik für einen kommerziellen Einsatz sehr attraktiv“, so Dr. Alethea Vanessa Zamora Gómez, die das Projektteam am IZM leitet und fachliche Ansprechpartnerin ist.

Schon lange ist bekannt, dass biochemische Prozesse von Organfunktionen über die Temperaturregulierung bis hin zur Hormonproduktion maßgeblich von Licht geprägt werden. Inzwischen ist die Forschung rund um Licht und Körper weit vorangeschritten, junge Disziplinen wie Life Science und Biophotonik beschäftigen sich mit Fragen, die sich am Schnittpunkt der Naturwissenschaften und Medizin befinden. Mit hochpräzisen und komplexen Messungen können damit Informationen darüber gewonnen werden, wie sich die Wechselwirkungen zwischen Licht und Materie gestalten, zum Beispiel bei der Untersuchung der Struktur von Zellen und Geweben, die für Krebserkrankungen relevant sind.

Einblicke in biologischchemische Vorgänge

Doch Einblicke in das Innerste zu erhalten, ist kein leichtes Unterfangen: Kürzlich wurden miniaturisierte Systeme basierend auf photonisch integrierten Schaltkreisen mit hochstabilen Faserverbindungen vorgeschlagen, um die Rolle des sichtbaren Lichts in biologischen Prozessen nachvollziehen zu können. Genau an dieser Stelle setzte das IZM in dem BMBF-geförderten Eurostars-Projekt an. Die Forschenden entwickelten das gänzlich neuartige Laserschweißverfahren, mit dem optische Fasern direkt mit PICs auf Quarzglas verschweißt werden können. Mit Hilfe des Partners ficonTEC Service GmbH wurde dieses Verfahren in einer automatischen Anlage umgesetzt, die eine hohe Reproduzierbarkeit und Skalierbarkeit bietet.

Das Forschungsteam rund um Dr. Zamora Gómez hat es sich zur Aufgabe gemacht, Glas-Glas-Verbindungen einfacher, robuster und langlebiger aufzubauen. Solche Verbindungen werden in der Fachwelt der Optik bereits genutzt, jedoch weisen konventionelle Lösungen einen erheblichen Nachteil auf: Zumeist werden die diskreten optischen Bauteile mit einem Klebstoff verbunden. Durch die Weichheit des Klebstoffs kann sich die Position des Bauteils über die Zeit ändern, zudem stellt er eine Störstelle zwischen den beiden Glasschichten dar, die eine Dämpfung des Signals verursachen und nach Alterung des Klebstoffs brüchig werden kann. Die Langzeitstabilität ist daher oft kritisch. Um diese Nachteile der Verbindungstechnik zu umgehen, haben die Forschenden einen Prozess des CO2-Laserschweißens entwickelt und realisieren damit erstmals eine direkte, thermisch robuste und transparente Glas-Glas-Verbindung.

Automatisierte Prozessanlage entwickelt

Um das Laserschweißen für zuverlässige Quarzglasverbindungen jedoch nicht nur experimentell durchzuführen, sondern es einen Schritt näher an die Industrialisierung und hohe Skalierbarkeit zu bringen, wurde eine gänzlich neue, automatisierte Prozessanlage entwickelt und hergestellt.

Die entstandene Anlage ermöglicht eine im Interface klebstofffreie und polarisationserhaltende, hocheffiziente Kopplung zwischen optischen Quarzglas-Fasern und Quarzglas-PICs mit integrierten Wellenleitern. Doch bis zur Umsetzung anwendungstauglicher Verbindungen, mussten die Forschenden eine Reihe technologischer Herausforderungen bewältigen. Dadurch, dass Glasfasern und die Substrate unterschiedliche Volumen aufweisen, sind auch die Wärmekapazitäten der beiden Fügepartner ungleich. Diese Diskrepanz resultiert in einem stark unterschiedlichen Aufheiz- und Abkühlverhalten, was z. B. zu Deformationen oder Rissen beim Abkühlen führen kann. Die Lösung der Photonik-Expertinnen und Experten lag darin, das Substrat mittels eines separaten und individuell anpassbaren Lasers homogen vorzuheizen, so dass die Schmelzphase der Faser und des Substrats dennoch gleichzeitig erreicht wird.

Die mit thermischer Prozessüberwachung bis 1300°C, einem bis auf 1µm genauen Positioniersystem, Bilderkennungsverfahren sowie einer Steuerungssoftware ausgestattete Anlage schweißte bereits im Laufe des Projekts erste Verbindungen, so dass die Funktionsfähigkeit getestet und erste prozessorientierte Messungen durchgeführt wurden.

Übergangslos ergaben sich nach dem PICWeld-Abschluss in 2021 erste Folgeprojekte, in denen die neue Technologie zum Faserkoppeln von Kollimatoren, Wellenleiterchips und Multilinsenarrays genutzt wurde. „Mit unserer Anlage zum CO2-Laserschweißen haben wir das bisherige Verfahrensprinzip erweitert: Besonders das hohe Automatisierungspotenzial ermöglicht Kunden, PICs mit höchster Kopplungseffizienz zu verwenden. In der Industrie integriert, bedeutet das einen Sprung für die Anwendungsbereiche der Biophotonik, aber auch Quantenkommunikation und Hochleistungsphotonik.“, erklärt Projektleiterin Dr. Alethea Vanessa Zamora Gómez.

Der Beitrag des Fraunhofer IZM in PICWeld wurde gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) mit dem Förderkennzeichen: 01QE1744C. Es gehört zum Eurostars-Programm (11324), in dessen Rahmen eine Zusammenarbeit mit Lionix International BV, Phix Photonics Assembly und ficonTEC Service GmbH erfolgt ist.

Weitere Informationen

Ähnliche Artikel