Magnetism in the quantum world

Magnetism in the quantum world

An international team of researchers has built quantum spin chains from carbon and provided experimental evidence for the Haldanae phase - one of the most important models of quantum magnetism. The development was achieved under the leadership of Empa and the International Iberian Nanotechnology Laboratory. Using scanning tunneling microscopy, the team provided experimental evidence for the Haldane phase, first predicted in 1983 by F.D.M. Haldane, one of the three winners of the 2016 Nobel Prize in Physics.

Specifically, Haldane predicted that a chain of spin-1 building blocks should be "fractionated" so that the last units behave like spin-½ objects. Using a combination of organic chemistry and surface chemistry in an ultra-high vacuum, one-dimensional spin chains of carbon were fabricated from triangulene, a hydrocarbon molecule with spin 1. The investigation of their magnetic excitations on a gold surface showed that the outermost chain links of the triangulene chains exhibited so-called Kondo resonances, a characteristic spectroscopic fingerprint of spin-½ quantum objects in contact with a metal surface.

Schematische Darstellung einer Triangulen-Quantenspinkette, die auf einer Goldoberfläche mit der scharfen Spitze eines Rastertunnelmikroskops untersucht wird. Jede Triangulen-Einheit hat einen Gesamtspin von 1, aber Quantenkorrelationen in der Kette führen zu einer Spinfraktionalisierung, so dass die endständigen Triangulene einen Spin von ½ aufweisen. Bild: EmpaSchematic representation of a triangulene quantum spin chain examined on a gold surface with the sharp tip of a scanning tunneling microscope. Each triangulene unit has a total spin of 1, but quantum correlations in the chain lead to spin fractionalization so that the terminal triangulenes have a spin of ½. Image: Empa

In addition to researching linear spin chains, the scientists are also focusing on two-dimensional networks of quantum magnets, promising material platforms for quantum computing.

  • Issue: Januar
  • Year: 2020
Image

Eugen G. Leuze Verlag GmbH & Co. KG
Karlstraße 4
88348 Bad Saulgau

Tel.: 07581 4801-0
Fax: 07581 4801-10
E-Mail: info@leuze-verlag.de

 

Melden Sie sich jetzt an unserem Newsletter an: