Physikerinnen und Physiker der Otto-von-Guericke-Universität Magdeburg wollen die Materialeigenschaften sogenannter magnetischer Elastomere so verändern, dass diese innovativen Kunststoffe künftig als intelligente Materialien etwa in Sensortechnologien der Robotik und Medizin eingesetzt werden können.
In einem von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekt zusammen mit Einrichtungen in Dresden und Aachen ist es das Ziel der Wissenschaftler, die außergewöhnlichen Eigenschaften dieser Kunststoffe bereits während des Herstellungsprozesses gezielt für Anwendungen wie in medizinischen Geräten oder Automobilkomponenten zu optimieren.
Elastomere sind Kunststoffe, die sich unter Zug- und Druckbelastung elastisch verformen, danach aber - wie Latex, Neopren, Silikon oder Gummi - wieder in ihre ursprüngliche Form zurückkehren. Magnetische Elastomere besitzen über diese elastischen Eigenschaften hinaus auch magnetische Eigenschaften: Sie können sich sowohl unter Zug- und Druckbelastung verformen, zusätzlich aber auch unter dem Einfluss eines Magnetfeldes, wobei sie dann auch ihre mechanischen Eigenschaften verändern. Dieses ungewöhnliche Verhalten mache magnetische Elastomere interessant und vielversprechend für innovative Anwendungen, etwa in der Schwingungstechnik oder als intelligente Materialien, so der Koordinator der Forschungsgruppe, Prof. Andreas Menzel vom Institut für Physik der Universität Magdeburg.
Großes Potential für Medizintechnik, Automotive und Robotik
Magnetische Elastomere bestehen aus winzigen magnetischen Teilchen in einem weichen, elastischen Material und können sich in Magnetfeldern verändern, z.B. sich verformen und ihre Steifigkeit anpassen. Das Team um Prof. Menzel möchte nun herausfinden, wie sich die Bildung innerer Strukturen beim Herstellungsprozess und damit die Materialeigenschaften der Elastomere durch eine geeignete Prozessführung beeinflussen, steuern und letztendlich optimieren lassen.
Magnetische Elastomere hätten dann nach Überzeugung des Forschungsteams ein großes Potential für zukünftige Technologien. Sie könnten z.B. in Sensoren verwendet werden, die auf magnetische Felder reagieren und so etwa in medizinischen Geräten, Automobilkomponenten oder in der Robotik eingesetzt werden, um Bewegungen zu steuern oder mechanische Reaktionen zu messen. Durch die Fähigkeit, ihre Eigenschaften in einem Magnetfeld zu verändern, eigneten sich magnetische Elastomere außerdem für vibrationsdämpfende Materialien, die z.B. in Fahrzeugen, Maschinen oder Bauwerken eingesetzt werden, um Schwingungen zu reduzieren. Diese dämpfenden Eigenschaften lassen sich dann durch Magnetfelder anpassen.
Damit diese faszinierenden Eigenschaften am Ende für praktische Zwecke aufgegriffen würden, liege ein weiterer Schwerpunkt des Forschungsprojektes darauf, die Erkenntnisse einer breiteren Öffentlichkeit zu vermitteln und das Wissen an Schülerinnen und Schüler bzw. Lehrkräfte weiterzugeben, so Prof. Andreas Menzel. Das Team um die Physikdidaktikerin Prof. Bianca Watzka von der RWTH Aachen entwickelt daher parallel zur Materialforschung Methoden, um die gewonnenen Erkenntnisse effektiv weiter zu vermitteln. So werden fachdidaktische Untersuchungen geplant um dann entsprechende Lehr- und Lernmaterialien für den Schulunterricht zu erstellen.
Neben den Teams von Prof. Menzel an der Universität Magdeburg und Prof. Bianca Watzka an der RWTH Aachen sind an dem Forschungsprojekt die Arbeitsgruppen von Prof. Markus Kästner und Prof. Stefan Odenbach an der TU Dresden sowie Dr. Günter Auernhammer vom Leibniz-Institut für Polymerforschung Dresden IPF beteiligt.