Eugen G. Leuze Verlag GmbH & Co. KG
×
 x 

Warenkorb leer.
Warenkorb - Warenkorb leer.
Eugen G. Leuze Verlag

Eine neue Anwendung für das additive Laserauftragschweißen wollen die Automotive Center Südwestfalen GmbH (acs) aus Attendorn und das Fraunhofer-Institut für Lasertechnik ILT aus Aachen im Verbundprojekt LAVAL angehen. Im Mittelpunkt steht die Validierung eines Verfahrens, mit dem sich Stahl- und Aluminiumbleche mit Hilfe des Laserauftragschweißens lokal verstärken lassen. In Grundlagenstudien wurde eine Erhöhung der Lastaufnahme fast um das Dreifache nachgewiesen, bei minimaler Gewichtszunahme.

Mit einer Porosität von 99,99 % besteht es praktisch nur aus Luft und gehört damit zu den leichtesten Stoffen der Welt: Aerobornitrid heißt das Material, das ein internationales Forschungsteam unter Leitung der Christian-Albrechts-Universität zu Kiel entwickelt hat. Basierend auf einer Bor-Stickstoff-Verbindung entwickelten sie eine dreidimensionale Nanostruktur, die Licht sehr stark streut und kaum absorbiert. Bestrahlt mit einem Laser gibt das Material eine gleichmäßige Beleuchtung ab, die je nach Lasertyp sehr viel effizienter und leistungsstärker als LED-Licht ist. Mit Laserlicht könnten Lampen für Autoscheinwerfer, Beamer oder Raumbeleuchtungen zukünftig kleiner und heller werden. Das Projekt ist Teil der europaweiten Forschungsinitiative „Graphene Flagship“, an der insgesamt rund 150 Forschungsgruppen aus Wissenschaft und Industrie in 23 Ländern beteiligt sind.

Die Fotoinitiatoren Typ 907 und Typ 369, die weltweit in Lötstopplacken für die Strukturierung von Leiterplatten verwendet werden, stehen wegen ihrer teils besorgniserregenden Risiken für die menschliche Gesundheit und die Umwelt auf der SVHC-Liste (Substances of Very High Concern). Peters hat Lötstopplacke entwickelt, die frei von diesen Fotoinitiatoren sind und sich auch hervorragend für die Direktbelichtung mit LED oder Laser-Lichtquellen eignen.

Polymerfolien, die extrem dünn sind und eine hohe Lichtstreuung aufweisen, sind das Ergebnis eines neuen Verfahrens aus dem Karlsruher Institut für Technologie (KIT). Das kostengünstige Material lässt sich industriell auf unterschiedlichsten Gegenständen aufbringen, um ihnen eine attraktive weiße Optik zu verleihen. Zudem kann das Verfahren Produkte umweltfreundlicher machen und das bisher zum „Weißmachen“ eingesetzte Titandioxid ersetzen.

Die Technische Universität Ilmenau erhält 1,75 Millionen Euro zur weiteren Erforschung selbstformierender Werkstoffe. Mit dem Geld der Deutschen Forschungsgemeinschaft soll das gemeinsam mit der Universität des Saarlandes und dem Karlsruher Institut für Technologie initiierte Projekt „MorphMater“ weiter vorangetrieben werden. Die so gewonnenen Kenntnisse können auf Mikroebene zur vereinfachten Herstellung von immer kleiner werdenden Mikrochips verwendet werden. Auf Makroebene können sie durch das Fügen von Batterien und Kontakten etwa zur Erhöhung der Fertigungsraten in der Autoindustrie beitragen oder zur Weiterentwicklung des Fügens von Metallen mit thermoplastischen Kunststoffen verwendet werden.

www.leg-thueringen.de

Starke Magnetfelder sind wichtige Werkzeuge, nicht nur in der Physik und in der Materialforschung, sondern zunehmend auch in anderen Zweigen der Wissenschaft und in der Medizin. In speziellen Magnetfeld-Laboren lassen sich heute sehr hohe Feldstärken erzielen. Allerdings reagieren die herkömmlichen, drahtumwickelten Solenoide zu langsam, um damit extrem schnelle magnetische Phänomene verfolgen zu können. Gerade in der Atom-, Molekül und Festkörperphysik und bei zahlreichen Anwendungen neuer Materialien ist dagegen ein Verständnis sehr schneller magnetischer Prozesse auch bei hohen Feldstärken vonnöten. Konventionelle Solenoide erreichen zwar hohe Feldstärken, allerdings ist die Geschwindigkeit begrenzt, mit der sich ihre Magnetfelder hochfahren lassen. Man erreicht zwar Schaltraten im Bereich von Mikrosekunden. Dies ist aber weit vom Femtosekundenregime entfernt, in dem viele interessante elektronische Prozesse stattfinden. Ein Team kanadischer Wissenschaftler hat nun ein neues Konzept zur blitzschnellen Erzeugung starker Magnetfelder vorgeschlagen, das auf Laserpulsen basiert und wesentlich schnellere Änderungsraten des Magnetfeldes ermöglicht.

Terahertz-Wellen werden für Wissenschaft und Technologie immer wichtiger. Allerdings ist die Erzeugung dieser Wellen nach wie vor eine Herausforderung. Einem Team des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der TU Dresden und der Universität Konstanz ist nun ein deutlicher Fortschritt gelungen. Es hat ein mit Gold gespicktes Germaniumbauteil entwickelt, das kurze Terahertz-Pulse mit einer vorteilhaften Eigenschaft erzeugt: Die Pulse sind überaus „breitbandig“, liefern also viele verschiedene Terahertz-Frequenzen zugleich.

Eis auf Flugzeugoberflächen birgt potenzielle Gefahren: Der Kraftstoffverbrauch steigt, die Aerodynamik wird gestört und der erzeugte Auftrieb sinkt – die Funktionsfähigkeit des Flugzeugs wird beeinträchtigt. Eisaggregation an Sonden und Sensoren führt auch zu Fehlern beim Messen der Luftgeschwindigkeit, was im Flugbetrieb sicherheitskritisch ist. Forscherinnen und Forscher am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden haben gemeinsam mit AIRBUS und der TU Dresden ein Laserverfahren entwickelt, das zwei Fliegen mit einer Klappe schlägt: Zum einen fällt das Eis von alleine ab und zum anderen ist eine geringere Heizleistung beim Enteisen erforderlich.

Im Jahr 1953/54 wurde am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr durch Karl Ziegler und Mitarbeiter ein wesentlich verbessertes Verfahren zur Herstellung von Polyethylen durch die damals sensationelle Entdeckung von Katalysatoren entwickelt, die das Aneinanderknüpfen einzelner Ethylen-Moleküle unter sehr einfachen Bedingungen und mit bisher nicht gekannter Effizienz bewirkten. Durch diese Entdeckung konnte eine ganze Klasse von Ziegler-Katalysatoren bereitgestellt werden, um auch die nächsthöheren Homologen des Ethylens wie Propen, Buten usw. in bisher unbekannte feste, kunststoffartige und teilkristalline Produkte umzuwandeln. Aber damit nicht genug. Die Katalysatoren erwiesen sich als Schlüssel für die großtechnische weltweite Herstellung der neuen vielfältigen Kunststoffe für deren Entdeckung Karl Ziegler 1963 mit dem Nobel-Preis ausgezeichnet worden ist [1].

Dieser Bericht ist eine kurze Zusammenfassung eines Vorhabens der Industriellen Gemeinschaftsforschung (IGF), das in Kooperation von der Gießereitechnologie der Hochschule für Angewandte Forschung in Aalen und der Abteilung Elektrochemie/Galvanotechnik des Forschungsinstituts Edelmetalle + Metallchemie (fem) in Schwäbisch Gmünd bearbeitet wurde. Initiiert und unterstützt wurde das Projekt durch zahlreiche Firmen der beiden Branchen Zinkdruckguss und Galvanotechnik aufgrund ungeklärter Schadensfälle und aufgrund von Problemen bei der Qualitätssicherung in der gesamten Prozesskette der Fertigung und des galvanischen Beschichtens von Zinkdruckguss-Teilen.
Seite 403 von 406

Der Leuze Verlag ist die Quelle für fundierte Fachinformationen.
Geschrieben von Fachleuten für Fachleute. Fachzeitschriften und Fachbücher
rund um Galvano- und Oberflächentechnik sowie Aufbau- und Verbindungstechnik in der Elektronik –
seit 120 Jahren professionelle Informationen und Fachwissen aus erster Hand.

UNTERNEHMEN

ZAHLARTEN

Paypal Alternative2Invoice
MaestroMastercard Alternate
American ExpressVisa

Zahlarten z.T. in Vorbereitung.